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Palladium-complex-catalyzed copolymerization of alkene and CO
forms various polyketones via alternating copolymerization of the
two monomerg:2 The reactions of strained cyclic olefins with CO,
which involve ring opening of the monomer, are thermodynamically
favorable and are expected to produce the polymers with novel
structures. Only a few reports of such polymerization, however,
have appeared in the literattr€opolymerization of methylene-
cyclopropane with CO catalyzed by a-Pghosphine complex was
recently shown to give the polyketone that contains a structural
unit formed via ring-opening copolymerization as a minor com-
ponent! 2-Aryl-1-methylenecyclopropanes were found to undergo
homopolymerization catalyzed by Pdiimine complexes and form
the structurally regulated hydrocarbon polymehs.this contribu-
tion, we report ring-opening copolymerization of the cyclic
monomer with CO, affording the polyketones exclusively composed
of ring-opened structural units.
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2-Phenyl-1-methylenecyclopropari) reacts with CO (1 atm)
in the presence of the catalyst, prepared in situ from PdCI(Me)-
(bpy) and NaBARF (BARF= [B{ C¢H3(CFs3),-3,5 4] ), to produce
polyketonela (M, = 19 000,M,/M, = 1.44 by GPC, polystyrene
standards) in 84% yield at room temperature (eq 1). NMR
spectroscopy including DEPT an&C—!H COSY technique
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Figure 1. 13C{H} NMR spectra of (i)la and (ii) la-13C in CDCl; at 25
°C. The copolymerization of 2-phenyl-1-methylenecyclopropdre {a-
13C) with CO was carried out in the presence of PdCI(Me)(bpy) ([Rd]
25 mM, [1al/[Pd] = 100) at 1 atm in CHCN at room temperature. The
peaks with asterisks are due to the solvent.

of the polymer between the copolymerization and homopolymer-
ization. The copolymerization of 2-phenyl-1-methylenecyclopro-
pane-313C (1a-13C) with CO producesa-13C whose*C{H} NMR
spectrum is shown in Figure 1(ii). The signalsja®5.1-36.2 and
41.0-43.3 correspond to thé*C-enriched CH carbons in the
polymer chain. In contrast, the homopolymerization of the same-
labeled monomer introduces the enrich#&a only at the vinylidene
carbon of the polymer.

The above-mentioned labeled position of polyketdae*C
indicates cleavage of a proximaHC bond during the polymer-

revealed the ring-opened structure of all the monomer units in the ization, as shown in Scheme 1. Insertion of CO into the-&#yl

product. The polyketone contains the isomeric structural uits
and B, both via ring-opening copolymerization, in 62:38 ratio.
Figure 1(i) depicts th&3C{*H} NMR spectrum ofa, showing the
=CH, carbon signals ai 123.5 and 124.9. The signalsé&a#1.6—
43.1 and 40.641.6 are assigned to the @end CHPh carbons of
structural unitA in eq 1, respectively, on the basis of comparison
of the positions with those of model compouridehe peaks ab
35.2-36.1 and 50.251.8 correspond to the structural uBit

The structural unit ofa contains a vinylidene group, which is
similar to that of the homopolymer obtained by the—Riiimine
complex-catalyzed polymerization of the monomer at elevated
temperaturé. Isotope-labeled experiments, however, indicated a
different insertion mode of the monomer and different end structure
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bond of the growing polymer gives the acylpalladium intermediate.
1,2-Insertion of the methylenecyclopropane into the-Bclyl bond
forms af-cyclopropylidenealkyl palladium intermediate that un-
dergoes rapig-alkyl elimination? resulting in the formation of a
Pd complex having an- or 3-phenyl alkyl ligand. Repetition of
the above procedures accounts for the alternating copolymerization
to produce the polyketone. The activation of CH, and C-CHPh
bonds, promoted by Pd, forms the two repeating uAitand B,
respectively. The existence of unsandB in the polymer chain

is consistent with 1,2-insertion of 2-phenyl-1-methylenecyclopro-
pane. Copolymerization ef-olefins with CO also proceeds mostly
via 1,2-insertion of thex-olefins into the Ped-acyl bond!2c It
contrasts with the mechanism of the homopolymerization of 2-aryl-
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Table 1. Copolymerization of 2-Aryl-1-methylenecyclopropanes

with CO Catalyzed by Pd Complexes?

time  vyield

runst catalyst (h) (%) M, (MM,

1¢ PdCI(Me)(bpy)+ NaBARF 3 84 19000 (1.44)
2 PdCI(Me)(bpy)+ NaBF 3 85 20000 (2.17)

3¢ PdCI(Me)(bpy)+ AgOTf 3 92 23000 (3.19)

4 PdCI(Me)(bpy) 66 60 17000 (1.72)
5 [(7z-PhCHCHCH)Pd(bpy)|BR 15 37 450000 (2.40)

6°d  PdCI(Me)(bpy)+ AgOTf 3 87 28000 (4.57)

7¢¢  PdCI(Me)(bpy)+ AgOTf 3 7 34000 (3.65)

aThe reaction conditions: [Pdf 25 mM, [1la] = 2.5 M, CO pressure:
1 atm, at rt in CHCN unless otherwise statetiDetermined by GPC in
THF vs polystyrene standards[Pd]:[Ag (or Na)] = 1:1.2.9 Monomerlb.
[Pd] = 12.5 mM, [Lb] = 1.25 M, in THF.® Monomerlc. [Pd] = 12.5
mM, [1c = 1.25 M, in THF.

1-methylenecyclopropanes containing selective 2,1-insertiorof C
C double bond of the monomer into theallyl—Pd bond?
Homopolymerization of methylenecylopropanes catalyzed by met-
allocene compounds and by Ni complex takes place via 1,2-
insertion, similarly to the copolymerization in this stuth?.
Expansion of the three-membered ring during the polymerization
renders insertion of 2-phenyl-1-methylenecyclopropane followed
by rearrangement of the growing polymer thermodynamically
favorable. To examine the effect of the monomer structure on the
reaction rate, we conducted kinetic measurement of the polymer-
ization. The reaction obeys first-order kinetics with respect to the
concentration of 2-phenyl-1-methylenecyclopropane-ad to 0
°C. The observed rate constant at® in THF-dg is 5.4 x 104
s 1 with catalyst concentration of 12.5 mN&fsd[catalyst]= 4.4
x 1075 s7I(cat mmoly ). The first-order kinetics indicates that the
rate-determining step of the polymer growth is the insertion of
methylenecyclopropane into the @ bond rather than CO
insertion, similarly to most alkereCO copolymerization reported
thus far? It is contrasted with the Rh-catalyzed copolymerization
of arylallenes with CO although both allene and methylenecyclo-
propane have a more reactive=C double bond than alkerié.
Table 1 summarizes the results of the polymerization. AgOTf
and NaBR are also effective as the cocatalyst for the copolymer-

ization (runs 2, 3), suggesting that the cationic Pd complexes act

as the efficient catalysts for the ring-opening copolymerization.
PdCI(Me)(bpy) catalyzes the polymerization in the absence of the
additives, but in a much lower rate (run 4)-Allyl —Pd complex

also promoted the copolymerization to give the copolymer with a
high molecular weightNl, = 450 000) in a lower yield (run 5). It

is attributed to a much slower insertion of CO into the-Rdallyl

bond than that into the PeMe bond!! 2-Phenyl-1-methylene-
cyclopropanes having Me or F substituents on the phenyl ring also
undergo copolymerization to give the corresponding polyketones
(runs 6, 7).

In summary, we found the Pd-complex-catalyzed ring-opening
copolymerization of 2-aryl-1-methylenecyclopropanes with CO to
afford the new polymers. The polymer growth, including alternating
insertion of the monomers and«C bond activation of the three-
membered ring of the polymer, is well-regulated by the Pd complex.
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